R22

Max. Marks: 60

Code No: R22A0028

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Regular/Supplementary Examinations, April 2025 **Discrete Mathematics**

(CSE,IT,C	CS&IT,CSE-CS	,CSI	E-Al	IML	,CS	E-D	S,C	SE-]	ΙΟΤ	& I	B.Te	ch-AIN	IL)
	Roll No												

Time: 3 hours

Note: This question paper contains two parts A and B

Part A is compulsory which carries 10 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks. ***

		PART-A (10 Marks)	BCLL	CO(s)	Marks
		(Write all answers of this part at one place)			
1	А	Write converse, inverse, and contrapositive of "If	L2	CO-I	[1M]
		quadrilateral is a parallelogram, then diagonals bisect each other".			
	В	Write about Conjunction and Conditional.	L1	CO-I	[1M]
	С	Define Power set of set A and write the cardinality of the Power set.	L1	CO-II	[1M]
	D	Define Equivalence relation.	L1	CO-II	[1M]
	E	Define Monoid.	L1	CO-III	[1M]
	F	For any two elements a, b in a Group G, prove that $(ab)^{-1} = b^{-1}a^{-1}$.	L3	CO-III	[1M]
	G	How many different words can be formed with the letters of	L5	CO-IV	[1M]
	TT	the word "MISSISSIPPI"?	т 1		[1]]
	H	State Binomial theorem.		CO-IV	
	I	Define Binary tree.		CO-V	
	J	PART-B (50 Marks)	LI	CO-V	
2 A	٨	SECTION-I	T 5	CO I	[#]\ []
	А	Prove whether the following is tautology:	L9	0-1	[5][1]
	р	$((P \lor (Q \land R)) \lor \sim (P \lor (Q \land r))$	1215	CO I	[#]/[]
	В	CV/P = 1 + 11 + 12 + 12	L9 L5	0-1	[5][1]
		SVR is logically implied to			
		$(P \lor Q) \land (P \to R) \land (Q \to S)$			
•		OR OLI I DONTE (C. D. D. C. D.	T 7	CO I	(7) ()
3	A	Obtain the PCNF of $(\sim P \rightarrow R) \land (Q \leftrightarrow P)$	L5	CO-I	[5M]
	В	Verify the validity of the following argument "every living thing is a plant or an animal. Joe's gold fish is alive and it is not a plant. All animals have hearts. Therefore Joe's gold fish has a heart."	L4	CO-I	[5M]
4		Let $A = \{1, 2, 3, 5, 6, 10, 15, 30\}$ and a relation R is defined as aRb iff 'a divides b', then show that (A, R) is a POSET. Also draw the Hasse diagram.	L6	CO-II	[10M]
5	А	Let $A = \{2, 4, 8, 16, 32\}$ show that the relation 'divides'	1.6	CO-II	[5M]
5	11	is partial ordering on A and draw Hasse diagram.	LU	00-n	[JIII]
	В	Explain i) Reflexive ii) Irreflexive iii) Symmetric iv) Transitive relations with suitable examples.	L2	CO-II	[5M]
6	А	If $S = \{1, 0, -1\}$ then Is S a Group under Usual addition? Is	L2	CO-III	[5M]
-		S a group under usual multiplication? Explain.			[]
	В	Prove that the group G is abelian if and only if $(ab)^2 = a^2b^2$, for all a, b in G.	L2	CO-III	[5M]

		OR			
7	А	Let G be a set of all non-zero real numbers and	L1	CO-III	[5M]
		a * b = (ab)/2			
		Show that $\langle G, * \rangle$ is an abelian group.			
	В	Show that $\langle G, \times_5 \rangle$ is a Group, where G= {1, 2, 3, 4}	L1	CO-III	[5M]
		SECTION-IV			
8		How many integers between 1 and 300 (inclusive) are divisible by	L1	CO-IV	[10M]
		At least one of i) 5, 6, 8 ii) None of 5, 6, 8			
		OR			
9	А	Out of 5 men and 2 women, a committee of 3 is to be formed. In how many ways Can it be formed if at least	L3	CO-IV	[5M]
	R	Solve the recurrence relation $an 3an 1+2an 2= 0$	13	CO-IV	[5M]
	D	$n \ge 3$, $a0 = 1$, $a1 = 0$.	ĽS	00-17	[314]

SECTION-V

10

11

14

Explain Kruskal's algorithm and hence find a Minimum Spanning Tree in the weighted graph shown in figure below

OR

d

Prove that the following graphs are isomorphic. L4 CO-V [10M] a V, VG b V 0 9 9 VIO Vy h Vq

C

L3

CO-V

[10M]